
The Security Impact of HTTPS Interception

Network Security - Research Project

Authors:

DEMOLINIS Rémy

GASSINE Alan

QUETEL Grégor

THAY Jacky

Supervisor:
GOESSENS Mathieu

M1 Cybersecurity
University of Rennes 1

May 15, 2022

Contents

1 Introduction 2

1.1 The original paper . 2

1.2 Goals . 2

2 TLS Interception 3

2.1 TLS Handshake . 3

2.2 TLS Interception detection . 3

2.3 Fingerprinting . 4

3 The experiment 5

3.1 Operating System . 5

3.2 List of Antiviruses . 5

3.3 List of Tests . 6

3.4 TLSlite-ng . 6

3.5 Website: ns-rp.tk . 7

4 Results 9

4.1 Interception . 9

4.1.1 Our results . 10

4.1.2 Comparison with the original paper 10

4.2 Tests on the website . 11

4.2.1 Subdomains tests . 11

4.2.2 ”Not recommended” ciphers . 11

5 Impact on security 12

6 Conclusion 13

References 14

Appendix 15

1

https://ns-rp.tk

1 Introduction

1.1 The original paper

Our research takes its roots from a paper written in 2017 [4] by a team composed of Zakir

Durumeric, Zane Ma, Drew Springall, Richard Barnes, Nick Sullivan, Elie Bursztein,

Michael Bailey, J. Alex Halderman and Vern Paxson. One of the many focuses from their

paper was the HTTPS Interception from antiviruses, the use of downgraded ciphers from

their interception and improper behavior when checking certificate (when there was one)

resulting in weakening the security of intercepted connection.

A summary of their findings can be found in section 4.1 figure 4.

At the time of their writings, some antiviruses studied would intercept incoming

HTTPS transmission from a server to the client, decrypt it, check their content for

potential attacks, and re-encrypt it back to the client using different ciphers from the

one used by the server. Most of the time ciphers were weaker than the one the client

originally advertise.

The insecure behavior of antivirus was not limited to improper use of weak ciphers,

but could also sometimes be from the lack of even basic certificate validation or flawed

validation of such [6].

This raises a few security and privacy concerns, using different ciphers from the server

may create weaknesses that can be exploited if using outdated ciphers and may also make

the user more traceable if the antivirus uses a set of ciphers that are specific to them.

1.2 Goals

The main goal of this project is to re-evaluate the security of antivirus four years after

the disclosure of their bad implementation of the TLS protocol.

From this comparison, we can assume whether or not the original paper has had any

impact on any antivirus software’s security policy since its publishing.

All our resources (code sources, fingerprints, slides, report, etc.) can be found on our

GitLab.

2

https://gitlab.istic.univ-rennes1.fr/rdemolinis/ns-research-project
https://gitlab.istic.univ-rennes1.fr/rdemolinis/ns-research-project

2 TLS Interception

2.1 TLS Handshake

When initiating a TLS connection, your browser sends a ClientHello with a set of pa-

rameters. Each browser or TLS client can choose the parameters it wants to use. Those

parameters are ordered lists of ciphers, compression methods, signature algorithms and

other extension types [5]. After the server receives this ClientHello it does an intersection

between its own supported parameters and the one the client asked for to select the cipher

suite, signature algorithm etc. that will be used for the exchange.

2.2 TLS Interception detection

Antiviruses intercepting TLS connection usually have their own TLS libraries, different

from the ones used by your browser. A way to detect an interception would be to check

for a mismatch between the fields in the ClientHello sent by the antivirus and the ones

that are usually sent by legitimate client based on the user-agent header sent.

Figure 1: Mismatch between expected TLS parameters and received ones based on the

user-agent

It can be interesting to notice that client-side, manually looking at the root certificate

will tell you if an interception occurred. Indeed if your antivirus wants to transparently

intercept your connection. It usually needs to add its self-signed CA certificate as trusted

one in your browser store.

3

2.3 Fingerprinting

As said earlier, to be able to detect on the server-side an intercepted connection, we had

to build fingerprints of the sent ClientHello and to compare them to fingerprints of known

clients (Firefox, Chrome, Edge, antivirus).

We simply cannot make a fingerprint of the ClientHello since some of their fields are

ephemeral. We thus need to choose which extensions to take into account. Based on the

chosen fields of the paper 5, we took the following set of extensions:

• Cipher suite: Ordered list of ciphers that will be used to encrypt the exchange.

• Client TLS: Maximum TLS version supported by the client.

• Compression methods: Compression algorithm to use before encrypting the

data, note that it is nowadays advised to disable compression since it exposes ex-

change to the CRIME vulnerability [7].

• Elliptic curve point format: Elliptic Curve algorithm that the client supports.

• Signature algorithm: List of signature/hash algorithm pairs to be used in digital

signatures.

• Supported groups: Elliptic curve groups that the client prefers to use when

proceed to key exchange.

4

3 The experiment

3.1 Operating System

All tests were made using Windows 10, none of our team members use a Macintosh

computer, therefore any test with Mac OS from the original paper was skipped.

3.2 List of Antiviruses

We selected several antiviruses from the paper for our experiments by their popularity and

the availability of a free version. We used their latest versions with the newest updates

of Windows 10 as of May 4th, 2022.

• Kaspersky Total Security: Before the start of the Russian invasion of Ukraine

on February 24th, 2022 and the blacklisting of Kaspersky’s product in the United

States of America by the Federal Communications Commission (FCC) for secu-

rity concerns, Kaspersky was renowned for having its own team of researchers do

their investigations on cybersecurity threats and other malware operations. Their

antiviruses received several awards from PC Magazine, PC World or AV-TEST.

• ESET Smart Security: Since 1987, ESET has won several security solutions

awards and has always placed into the most popular ones, especially for profession-

als. The company has a global sales network covering 180 countries, and regional

offices in Bratislava, San Diego, Singapore and Buenos Aires.

• BitDefender Total Security: BitDefender ranks ninth globally among Microsoft

Windows anti-malware application sellers as of May 2020 and BitDefender products

are distributed through partners in over 150 countries.

• Avast Antivirus: Avast has 435 million monthly active users and has the sec-

ond largest market share among anti-malware application vendors worldwide as of

April 2020. Avast is a Czech antivirus software whose company’s headquarter is in

Prague, Czech Republic.

• Avira Free Antivirus: Avira now owned by Symantec Corporation since Decem-

ber 2020, one of the biggest players in cybersecurity, is an antivirus that received

several awards and good review between 2008 to 2016 from the like of PC World or

AV-Test.

• AVG AntiVirus: AVG is an antivirus made by AVG Technologies who merged

with Avast Software s.r.o. in 2017. According to themselves, AVG boast an user-

base of 200 million active users worldwide. It was selected as PC Magazine Editors’

Choice in the free antivirus category back in 2012.

A brand-new computer with McAfee Antivirus installed for a free 30-day trial was

procured by one of our team member. This antivirus was also tested and no interception

was detected, hence its results will be skipped in section 4.

5

3.3 List of Tests

After selecting the antiviruses, we needed a set of tests to check for each of them, in order

to evaluate their security. Like in the paper, the first thing that we thought about was

the fingerprint and especially the cipher suites and the TLS version:

• We wanted to check for weak ciphers such as RC4, DES or 3DES. If an antivirus

advertises one of those, there is a problem because they are full of vulnerabilities.

• Also, with the information contained in the fingerprint, we are able to detect if a

client is likely vulnerable to some common attacks. For example, BEAST attack

requires a TLS 1.1 with a CBC cipher.

The second thing that is interesting to check is the certificate of the web page. Actually,

antiviruses can have different behaviors regarding different types of certificates. Below is

the list that we chose and that we will detail more after:

• Valid certificate

• Valid for another domain only (invalid on this domain)

• Self-signed certificate

• Wildcard certificate

Finally, we chose a few browsers to run those tests on. In the paper, they used Internet

Explorer, Firefox and Chrome so we did too. Also, we added Edge because it is the new

version of Internet Explorer, and Opera because one of us had it and we thought: why

not?

3.4 TLSlite-ng

To proceed with our tests, we decided to build a python server because of its ease of use;

we can indeed build an HTTPS server very easily. We only needed to find a way to be

able to interact with the TLS handshake. To do so, we used the tlslite-ng package [8],

which implements SSL and TLS protocols. We had to modify the python classes to fit our

needs. We indeed had to access the ClientHello after proceeding with the TLS handshake,

choose the correct certificate and content to give to the Client based on the asked server

name.

The library thus allowed us to parse and extract data from the ClientHello fields,

and establish the handshake with client based on the asked parameters. It was very

convenient for us to find such a library since TLS or SSL handshake can act in different

ways depending on their version used and parameters.

6

3.5 Website: ns-rp.tk

In order to implement the tests that we previously talked about, we needed a website

with a few subdomains for each test. Therefore, we took the free domain ns-rp.tk on

Freenom, and added several DNS entries for our subdomains:

• The first one, sub1, whose role is to load a certificate which, at generation, was filled

with incorrect information. In our case, we generated this certificate for google.com,

which implies that if we load it on sub1.ns-rp.tk, it is supposed to be invalid since

it does not contain the information of our website.

• The second one, sub2, loads a self-signed certificate. As it is not verified by a third

party authority like Let’s Encrypt for example, it is supposed to be considered

insecure by the browser.

• Subdomain sub3 is a little bit different because it loads a wildcard certificate. Ba-

sically, a wildcard certificate is valid only for the subdomains of the domain it was

generated for. In our case, we generated one for *.ns-rp.tk, which means that if we

load the certificate for sub3, it is supposed to be valid. But what is the behavior

regarding the subdomains of this valid subdomain? And how does an antivirus

react to this specific situation? That is the reason why we created sub.sub3 and

sub.sub.sub3.

• Finally, we had several valid subdomains from sub4 to sub10 that we created just

in case, but weren’t used in our tests.

Figure 2: Summary of our subdomains and their corresponding RFCs

Regarding the structure of the website, we implemented a few routes to easily obtain

exploitable information about the clients’ fingerprints:

• /, the main domain, which prints the client fingerprint, the ciphers contained in it

that are not recommended by the IANA [5], as well as a table with the tests of the

certificates on our subdomains

• /api/ returns a JSON with the raw client fingerprint

7

https://ns-rp.tk

• /fp/ gives the 10 last fingerprints’ SHAs

• /fp/details/ outputs the 10 last fingerprints in detail (raw JSONs)

• /fp/[1-10] prints the Nth last fingerprint

• /code/ redirects to our GitLab repository

• /slides/ downloads the slides of our final presentation

When someone visits our main page, if his fingerprint has not already been encountered

before, it is stored in our local database we created for this purpose with MongoDB. All

the /fp/* pages issue a query to this database in order to print the data detailed above.

8

4 Results

4.1 Interception

Figure 3: Our array of interception, inspired of the one in the paper

Figure 4: The array of the original paper [4]

9

4.1.1 Our results

As you can see above (Figure 3), we made an array similar to the one in the original

paper, to see the differences between both to check if the antiviruses improved or not.

To start, Kaspersky, ESET and BitDefender are doing interception on all tested browsers,

but they do ”Mirrors Client Ciphers”1 this means that they copy the ciphers of the orig-

inal certificate and they use them in their own certificates (see an example in appendix

with BitDefender cipher suites on Firefox and the same one without antivirus, page 15),

but they sometimes add a TLS EMPTY RENEGOTIATION INFO SCSV cipher (which is not

really a cipher) which permits to avoid fails and prevents attacks, and it’s possible that

depending on the browser, they add some random ciphers at the beginning of the cipher

list, but we ignored them.

To continue, Avast and AVG are doing interception on Internet Explorer only (also Mir-

rors Client Ciphers), but this is not very important because today it is not supported

(by default) by recent Windows versions.

And finally Avira does not do any interception at all.

We can also see that now they all use TLS 1.2.

4.1.2 Comparison with the original paper

Compared to the original paper (Figure 4):

➾ Kaspersky: Fixed its CRIME Vulnerability [7] (No compression methods in its

fingerprints);

➾ BitDefender: Stopped advertising RC4 ciphers;

➾ ESET: Now uses TLS version 1.2 instead of 1.0 and has corrected the ”Broken Cer-

tificate Validation” (we did not use NOD32 but apparently it seems to be included

in the Smart Security pack2);

➾ Avast: Is the same as before on Windows, only intercepts on Internet Explorer;

➾ Avira: Also the same as before, it still does not do any interception (it was said in

the paper but not in their array);

➾ AVG: Stopped advertising RC4 ciphers too, and no longer does interception on

Google Chrome.

The conclusion of those results is that globally they all improved and fixed their

problems (except Avira which did not have those problems, and Avast).

1In order to see interceptions with ”Mirrors Client Ciphers”, we just looked directly the certificate

itself, and we saw the names of the antiviruses.
2When we tried to install it the free license gave us Smart Security.

10

https://datatracker.ietf.org/doc/html/rfc5746

4.2 Tests on the website

4.2.1 Subdomains tests

Like we mentioned in section 3.3, we did some tests directly on our website when some-

body connects to it. Here is the table of the results of those tests with all the antiviruses

we tested (on Firefox):

Figure 5: The table that you can find on the website

You can find in this array the tested subdomain, the RFC belonging to the test,

the test itself (for more information cf. section 3.5), the expected behavior of a good

functioning browser, and if the browser used actually reached the subdomain 3.

4.2.2 ”Not recommended” ciphers

The last thing we implemented on our website is a part which shows the ”not recom-

mended” ciphers. But this does not mean that they are flawed, rather it indicates that

the item either has not been through the IETF consensus process, has limited applica-

bility, or is intended only for specific use cases.

The list of not recommended ciphers we used is from IANA [5].

Here is an example of what you can find on the website:

Figure 6: List of not recommended ciphers (on Firefox without any antivirus)

3Out of all the web browsers used, Firefox showed the best results.

11

5 Impact on security

Our results are unequivocal, the rising interest of everyone for security forced the an-

tiviruses constructors to increase the level of security of their software. In 2017 [4], only

2 of the 21 tested antiviruses were mirroring client ciphers. Today, the 5 antiviruses

that did interception that we tested were also mirroring ciphers, being the best practice

they could have. Since all the browsers that we used had good practice in terms of TLS

we were not able to see the behavior of antivirus in the case of a client that advertises

weak ciphers or other TLS parameters, and thus seeing if the antivirus blindly copies the

advertised ciphers of the client, or if there is a real wish from the software companies to

increases the security of HTTPS traffic.

No improper certificate validation was noticed, even when talking about delicate cases

such as the wildcard certificate. All the vulnerabilities detected in 2017 on these an-

tiviruses got patched, but we do not know about more recent or complex vulnerabilities.

We also noticed that to avoid attacks where someone could dump the TLS traffic and

wait for a key leak, all the browsers and consequently all the antiviruses we analysed

preferred ciphers that would ensure perfect forward secrecy which would correspond with

the findings of another paper [3]. For those kinds of ciphers, an unique session key is

generated for every new session exchange.

We can safely declare that between those 4 years, security of antivirus interception

has been increased. We’re not announcing that it is now perfect, neither are we telling

that HTTPS traffic interception is relevant for antiviruses, but the reveal of such bad

practices from security vendors five years ago had an impact on how these companies

deal with their users’ security today.

12

6 Conclusion

From the results found in section 4, it is safe to assume mirroring ciphers has become the

norm for antiviruses software since the publishing of the original paper from 2017 [4], it

may have played a hand in changing their security policy.

However, HTTPS interception is still being done for some of the antiviruses studied,

this may result in trust issues in regard to privacy concerns, even if the antivirus only

checks the data intercepted for potential attacks, the possibility still remains for it to be

read for other reasons, it all boils down to how much we trust the antiviruses’ developers.

With more time and budget, more antiviruses could be studied and some other features

could be added to our website. One of them would be the increase of the parameters

harvested by our website to make a fingerprint. A more complex analysis of all the

parameters of a browser such as Firefox could allow us to detect differences between an

intercepted connection using Firefox user-agent and the actual cryptographic parameters

the antivirus uses. Having more information could give us a hint on the antivirus from

the client-side. We could also extend our tests to androids antiviruses, who may suffer

from outdated TLS protocol [1].

The original paper covered a few middleboxes which we did not because of time

restraint, it is important to check the evolution of their security policy and see if they

have made any changes since the original paper [4].

13

References

[1] P. Gill A. Razaghpanah ; A. Akhavan Niaki ; N. Vallina-Rodriguez ; S. Sundaresan ;

J. Amann. Studying TLS Usage in Android Apps, November 2017.

[2] ANSSI. Recommandations relatives à l’interconnexion d’un système d’information à

internet (Section 4.3), June 19, 2020.

[3] P. Kotzias; A. Razaghpanah ; J. Amann ; K. G. Paterson ; N. Vallina-Rodriguez ; J.

Caballero. Coming of Age: A Longitudinal Study of TLS Deployment, October 2018.

[4] Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N. Sullivan, E. Bursztein, M. Bailey,

J. A. Halderman, and V. Paxsonk. The Security Impact of HTTPS Interception,

February - March 2017.

[5] IANA. IANA extension values, April 27, 2022.

[6] Tavis Ormandy. Kaspersky: SSL interception differentiates certificates with a 32bit

hash, Nov 1 2016.

[7] Thai Rizzo, Juliano Duong. The CRIME attack, August 2008.

[8] tlsfuzzer. tlslite-ng, May 11 2022.

[9] Nikolai Tschacher. Incolumitas, June 19, 2020.

14

https://www.ssi.gouv.fr/uploads/2020/06/anssi-guide-passerelle_internet_securisee-v3.pdf
https://www.ssi.gouv.fr/uploads/2020/06/anssi-guide-passerelle_internet_securisee-v3.pdf
https://www.ssi.gouv.fr/uploads/2020/06/anssi-guide-passerelle_internet_securisee-v3.pdf
https://dl.acm.org/doi/pdf/10.1145/3278532.3278568
https://www.ndss-symposium.org/wp-content/uploads/2017/09/ndss2017_04A-4_Durumeric_paper_0.pdf
https://www.iana.org/assignments/tls-extensiontype-values/tls-extensiontype-values.xhtml
https://bugs.chromium.org/p/project-zero/issues/detail?id=978
https://bugs.chromium.org/p/project-zero/issues/detail?id=978
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/edit#slide=id.g1eb6c1b5_3_6
https://github.com/tlsfuzzer/tlslite-ng
https://incolumitas.com/2022/01/18/fingerprinting-TLS/

Appendix

{

"tls_fingerprints": {

"cipher_suites": [

"TLS_AES_128_GCM_SHA256",

"TLS_CHACHA20_POLY1305_SHA256",

"TLS_AES_256_GCM_SHA384",

"TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256",

"TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",

"TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256",

"TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256",

"TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384",

"TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384",

"TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA",

"TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA",

"TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA",

"TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA",

"TLS_RSA_WITH_AES_128_GCM_SHA256",

"TLS_RSA_WITH_AES_256_GCM_SHA384",

"TLS_RSA_WITH_AES_128_CBC_SHA",

"TLS_RSA_WITH_AES_256_CBC_SHA"

],

"client_version": "TLS 1.2",

"signature_algorithm": [

"ecdsa_secp256r1_sha256",

"ecdsa_secp384r1_sha384",

"ecdsa_secp521r1_sha512",

"rsa_pss_rsae_sha256",

"rsa_pss_rsae_sha384",

"rsa_pss_rsae_sha512",

"rsa_pkcs1_sha256",

"rsa_pkcs1_sha384",

"rsa_pkcs1_sha512",

"ecdsa_sha1",

"rsa_pkcs1_sha1"

]

}

}

Figure 7: Cipher suites on Firefox: Without antivirus

15

{

"tls_fingerprints": {

"cipher_suites": [

"TLS_AES_128_GCM_SHA256",

"TLS_CHACHA20_POLY1305_SHA256",

"TLS_AES_256_GCM_SHA384",

"TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256",

"TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",

"TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256",

"TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256",

"TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384",

"TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384",

"TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA",

"TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA",

"TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA",

"TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA",

"TLS_RSA_WITH_AES_128_GCM_SHA256",

"TLS_RSA_WITH_AES_256_GCM_SHA384",

"TLS_RSA_WITH_AES_128_CBC_SHA",

"TLS_RSA_WITH_AES_256_CBC_SHA"

],

"client_version": "TLS 1.2",

"signature_algorithm": [

"ecdsa_secp256r1_sha256",

"ecdsa_secp384r1_sha384",

"rsa_pss_rsae_sha256",

"rsa_pss_rsae_sha384",

"rsa_pss_rsae_sha512",

"rsa_pkcs1_sha256",

"rsa_pkcs1_sha384",

"rsa_pkcs1_sha512",

"ecdsa_sha1",

"rsa_pkcs1_sha1"

]

}

}

Figure 8: Cipher suites on Firefox: With BitDefender

16

	Introduction
	The original paper
	Goals

	TLS Interception
	TLS Handshake
	TLS Interception detection
	Fingerprinting

	The experiment
	Operating System
	List of Antiviruses
	List of Tests
	TLSlite-ng
	Website: ns-rp.tk

	Results
	Interception
	Our results
	Comparison with the original paper

	Tests on the website
	Subdomains tests
	"Not recommended" ciphers

	Impact on security
	Conclusion
	References
	Appendix

