
Project Report for Low Level Programming

Reversi Game

DEMOLINIS Rémy

M1 Cybersecurity

remy.demolinis@etudiant.univ-rennes1.fr

ISITC Department
University of Rennes 1

December 10, 2021

Contents

1 Introduction 1

1.1 Description of the project . 1

1.2 Goal(s) . 1

1.3 What already exists . 1

2 Implementation 2

2.1 Project folder structure . 2

2.2 Libraries . 2

2.3 Code . 3

2.3.1 Structures . 3

2.3.2 Board.c . 4

2.3.3 Player.c . 5

2.3.4 Reversi.c . 6

3 Algorithms 8

3.1 Minimax . 8

3.2 Minimax with Alpha-Beta pruning . 9

3.3 Score Heuristic . 9

4 Performances 11

4.1 Time . 11

4.2 Valgrind check . 11

4.3 Gprof . 13

5 Conclusion 14

References 15

1

1 Introduction

1.1 Description of the project

The concept is the one of the board game ”Othello” also called ”Reversi” whose the goal

is to more pawn of our colour than the opponent at the end of the game. The game ends

when the board is full or when nobody can play anymore. The board has 64 cells (8x8),

which the default size that we used.

1.2 Goal(s)

The goal of this project was to implement a Reversi game in C programming language

with at the en a good AI which can win as many possible games. The project was realized

in some steps (homework-N) to implement step by step the final game, and understand

well the functioning of the code (and the game).

The main game was coded with some ”Bit-wise operation” to improve the compute time

of the program. All the specifications will be explain in the following parts of this report.

1.3 What already exists

If we search a little on internet we can already find some different implementations in other

programming languages, and some information about bit-wise operation, functioning of

bit-boards and some heuristic improvements. All the sources used are quoted is this

report and at some locations in the code.

Figure 1: Example of a game of Reversi [1]

1

2 Implementation

2.1 Project folder structure

reversi/
Makefile
include/

board.h
player.h

src/
Makefile
board.c
player.c
reversi.c
reversi.h

test/

Figure 2: Tree view of the project folder (code & makefile only)

2.2 Libraries

For this part I will start by introduce the used libraries, except stdio.h and stdlib.h,

because those are the basics ones, so I used :

➣ ctype.h : This library provide some functions to do character processing. It is used

in player.c to test some characters like verify if it’s an alphabetic or a digit, and

also to transform a lowercase in uppercase.

➣ err.h : Used to display some errors with the functions err() or errx(), on the stream

stderr instead of stdout.

➣ getopt.h : Used in reversi.c, to have the variables optarg, optind, ... And the

functions getopt(), ... Which are useful to treat the entry of the program when we

launch it.

➣ math.h : One of the most useful in player.c, it permit to do some complex calcu-

lations, for example in heuristic or in minimax.

➣ stdbool.h : bring the real notion of boolean (true/false) in C, for the following

functions.

➣ string.h : Very useful for the strings which are just a array of characters in C, with

this library we can do some processing on strings, like count the number of char,

copy a string, concatenate, ...

➣ sys/types.h : This one defines a collections of typedef symbols and structures, we

use it for the getpid() function which we use to have a random-like draw of numbers,

for the random player in player.c.

2

➣ time.h : We also use this one for the randomizer, to have the function time().

➣ unistd.h : Used to provide some POSIX system variables and functions.

In addition of those libraries I needed to put this line: #define GNU SOURCE to

use the function getline() to get the entry of stdin (like keyboard entries), I put it on the

top of player.c code, because this line need to be before the including of stdio.h to work.

2.3 Code

In this section I will start by introduce the different structures and after that I will explain

the usefulness of each asked functions, as well as my choices and my own functions, file

by file (except for the algorithms like minimax, minimax ab or heuristic which you will

find in the part 3 (Algorithms) page 8).

2.3.1 Structures

Here is the list of all new structures (and an enumeration, and an external variable) that

I used for the create the reversi :

➤ (enum) disc t : It’s the only one enumeration, and it’s for every disc possible

(players, empty and hint).

➤ (extern) comments : This variable is here to display or not the comments during

a game, for example we don’t to see all the comments from the calculations of the

IA, so I put it in external to modify it in every file.c, when I need it.

➤ board t : It’s the most important one, because this is the board (without it there is

no game), so the board is composed of a size, a disc t, and four bitboards : one for

the position of black pawns, another for white pawns, one for the possibles moves

and the last one to store the next move to be examined (through board next move).

So all bitboards are summed to be just one board with everything (the one that we

see).

➤ move t : A move t is composed of a row and a column, to be correspond with a

cell of the board.

➤ score t : The last one is literally the score of the game, with two short numbers

whose are for black and white player.

3

2.3.2 Board.c

Here is the lists of the different functions of board.c (firstly the asked ones, and after my

own functions).

➢ board alloc(): Here to dynamically allocate memory for the game board.

➢ board copy(): Create a new board which a copy of an existing one.

➢ board count player moves(): Count the possible moves for the actual player.

➢ board free(): Free the allocated memory of a board.

➢ board get(): Get the disc located at the asked position (player, empty, or hint

disc).

➢ board init(): Create a new board and initialize it for a new game.

➢ board is move valid(): Verify if a move is valid (and return true or false).

➢ board next move(): Store the possible moves (in the bitboard next moves), ex-

amine the next possible move, and remove it from the next moves.

➢ board play(): Play a round of reversi, and verify if there is a next round or if the

game is finished.

[Modif.: I chose to add a boolean in parameters, to display or not some information

like a past turn of the end or the game, because I use this function in my AI’s ones

so I don’t want to display it when they looking for a move.]

➢ board player(): Get the current player of a board and return it.

➢ board print(): Print the board set in parameters, in a file (or in terminal with

stdout).

➢ board score(): Compute the score of the players with the help of bitboard popcount.

➢ board set(): Set the desired disc (player, empty, or hint) at the position set in

parameters.

➢ board set player(): Set the player entered in parameters, and call my function

move set(), to compute the moves of the new player.

➢ board size(): Get the size of a board and return it.

➢ (static) bitboard popcount(): Count the number of bits set to 1, using SWAR

popcount algorithm. [2]

➢ (static) compute moves(): It’s the function who compute all the possible moves

for a player.

➢ (static) set bitboard(): Set the desired bit to 1 in a bitboard.

4

➢ (static) shift <DIRECTION>(): Shift in the asked direction in a bitboard, it’s

the way to move in a bitboard.

➢ N-A1 (static) is board full(): Used to check is a board is full or not (to finish a

game in board play().

➢ N-A(static) move set(): This function is here to compute the move for the right

player, it verifies the current player and compute this moves its moves and it also

avoids code duplication.

For every shifts I add masks (of bits) to prevent some computing problems for the

players’ movements, for West and East the masks for every size are in an array, and

choose in the shift. For North or South I just do a loop to put bit-1 on the right cells.

For the defined number I just put BIT1 instead write everywhere (int18)1 or (bit-

board t)1; And the other is the asked one DIRECTIONS which is 8, for the number of

shift directions possible.

2.3.3 Player.c

Same things for this part (asked functions and my own ones).

➢ human player(): This is the function which handle all the game for real player, it

print all the instructions and manage entries, and play turn for each human player.

➢ minimax ab player(): Use the minimax ab() function to find the best move for

a player.

➢ minimax player(): Use theminimax() function to find the best move for a player.

➢ random player(): Choose randomly a move in the possible moves for a player.

➢ (static) save game(): Save the current board in a file, to continue later the game.

➢ (static) score heuristic(): This is the most essential function for the AI, it’s

the one who compute the score heuristic using a few specifics. You can find the

improvements in the section 3.3, page 9.

➢ N-A (static) min() & max(): Those two functions are here to avoid some code

duplication, and just return the minimum or the maximum or the two values in

entry.

➢ N-A (static) minimax(): [3] This is the function who return the best score of

every move, and it is used in the minimax player().

➢ N-A (static) minimax ab(): Same things thanminimax() but with an alpha-beta

pruning [4] and used in minimax ab player().

1N-A for Non-Asked, the function with this attribute were created by myself to simplify the code (for

example, avoid code duplication, ...).

5

➢ N-A (static) prng init(): It’s a function that I find in the slides of the course,

to set a seed just one time during the execution, and this seed be used for the

randomizer.

In player.c code, I defined three numbers :

➠ DEPTH = 5 : The depth is use in the minimax’s AIs, it’s the number of turn in

advance that the functions will compute, and I choose 5 because this is enough and

maybe the best one if we compare time and result.

➠ STRING MAX = 21 : I choose to put 21 for the maximal length of a string, to

allow the user to use 20 characters for name the backup file for example. And 21 is

due of the last characters that is ’\0’.

➠ MAX STRING CELL = 3 : It’s the maximum characters needed to a cell

in the board (for example ”A10” will be [’A’, ’1’, ’0’]), but in the code I put

MAX STRING CELL + 2 in a array, it’s because this array can have 4 chars for

the position of a cell (to return an error in this case), and put the last chars ’\0’ at
the final of the string, example [’C’, ’1’, ’1’, ’2’, ’\0’].

2.3.4 Reversi.c

In this file there is the main() function, and all the launch processing.

Here is the list of all functions :

➢ main(): Is in this functions that we do everything, first we handle all the situations

possible for the commands to start the program (options, arguments, ...), and we

launch the game.

➢ (static) file parser(): With this function we can open and read a file which con-

tains a board like this :

X

X O

X O X

O

➢ (static) game(): This the function which manage every turn, firstly it print wel-

coming sentence and the board, and after this just do every turn with the help of

board play() and when the game is finish, it just return the result of the game (win,

draw, resigned, ...).

➢ N-A (static) get tactic(): I made this function to avoid code duplication, it just

return the tactic that we put in argument in the program and verify if it’s an

existing one.

6

In the code of reversi.c I also use some magic numbers :

➠ TACTIC MIN & TACTIC MAX : Those have a number (0 and 1), and these

numbers correspond to random player() (0) and minimax ab player (1).

➠ HUMAN PLAYER = -1 : I use this one by default for the tactics, so if there

is no options for those, it will be two people who will play (correspond to hu-

man player()).

➠ The different exit for a game : -1 if black player resign, -2 if white player resign, 1

if black win, 2 if white win and 0 if the game is a draw.

➠ STRING MAX = 20 : I put 20 by default, because I just use it for the name of

the tactics when they are print.

7

3 Algorithms

3.1 Minimax

The minimax algorithm take a board, a depth and a player in entry. It verify for which

player it needs to compute, if the player in entry is the same than the current one, it

will maximize the score else it will minimize it. To do that it check every move possible,

check which is the best (with the score) and for the opponent it will check which move

will be the worst (with the score too). And at the final it returns the best score that it

has found.

Here is some statistics done after some tests (With basic score heuristic) :

➥ On 100 games: 79% Wins; 14% Looses; 7% Draws

➥ On 10 games: 18.09s (average time of the program, on my VM2)

For the win rate test I used this script (works only if we return the result of game()):

#!/ bin / bash

black=0

white=0

draw=0

games=100

for ((c=1 ; c <= $games ; c++))

do

. / . . / s r c / r e v e r s i −b 1 −w 0 −s 3 > /dev/ nu l l

r e s u l t=$?
i f [$ r e s u l t == 1]

then

((b lack++))

e l i f [$ r e s u l t == 2]

then

((white++))

e l i f [$ r e s u l t == 0]

then

((draw++))

else

echo ”Code : $?”
f i

echo ”Number o f b lack wins : $black | white wins : $white | draw : $draw”

s l e ep 1

done

black p=$ (echo ” $black / $ s i z e ∗100” | bc − l)

white p=$ (echo ” $white / $ s i z e ∗100” | bc − l)

draw p=$ (echo ”$draw/ $ s i z e ∗100” | bc − l)

echo ”Wins : $black p% | Losses : $white p% | Draws : $draw p%”

28 cores, 16GB RAM ➝ Computer: Ryzen 9 3900XT, 32GB RAM

8

3.2 Minimax with Alpha-Beta pruning

The minimax algorithm with alpha-beta pruning has the same entry with two additional

ones, alpha and beta. This is the same operations than the first one but these new

variables permit to the functions to check less possibilities with the same result at final.

Here is some statistics done after some tests (With basic score heuristic) :

➥ On 100 games: 90% Wins; 8% Looses; 2% Draws ➾ so +11% Win rate.

➥ On 10 games: 0.63s (average time of the program, on my VM) ➾ so -17.46s

(-2771,42%).

As we can see the alpha-beta pruning is a way better than the classic minimax,

especially in time. It’s almost 30 times quicker !

So that’s why we use the minimax ab player by default in the game.

3.3 Score Heuristic

I choose to only improve the score heuristic() function, mainly because of the time, and

also because of my skills. So I did a few research to find an idea of heuristic improvements,

and I saw that the main condition for a good heuristic function is to compute :

➟ Coin parity: The difference between current player pawns and the opponent ones.

➟ Mobility: The difference between current player and opponent possible moves.

➟ Corners Captured: The number of captured corners of each players.

➟ Stability: For this one each cells have a value (positive or negative), to say if the

move will be good or not, because we need to avoid certain cells, like the ones close

to corners.

➟ (+)Corners Closeness: I had this one to go with the stability and to support

the fact that the program need to avoid as much as possible the cells around the

corners.

When I checked all of that I sum all these variables. But I saw that Kartik Kukreja

(the person who did this website [7]), multiply all the values of the variables just over

with some numbers and when I did the same, the win rate increased. So I choose to put

the same value as him (here is his GitHub), and he is the values and how I used them

(and by default my variables heuristic is equal to the score difference of the game, like

at the begining) :

9

https://github.com/kartikkukreja
https://github.com/kartikkukreja/blog-codes/blob/master/src/Heuristic%20Function%20for%20Reversi%20(Othello).cpp

double h e u r i s t i c = (p laye r == BLACK DISC ? s co r e . b lack − s co r e . white :

s c o r e . white − s co r e . b lack) ;

[. . .]

h e u r i s t i c += 10 ∗ par i t y

h e u r i s t i c += 78.922 ∗ mobi l i ty

h e u r i s t i c += 801.724 ∗ co rne r s /∗ captured ∗/
h e u r i s t i c += 382.026 ∗ c l o s e n e s s /∗ from the corners ∗/
h e u r i s t i c += 10 ∗ s t a b i l i t y

Figure 3: Calculation of heuristic

So to set all of that in place I needed to put the function score heuristic() in double

and also minimax ab().

For the stability calculation, I created four array in static (stability tabN[N*N] where N

is the size of the board) and another one who contains all fours (*stability tabs[4]).

Now we will look at the same tests than the previous sections (minimax ab player vs

random player) :

➥ On 10 times 100 games: 99% Wins; 0.6% Losses; 0.4%Draws

(Win rate minimal: 97% and maximal: 100%) ➾ so +9% Win rate compared to

the old score heuristic()

➥ On 10 games: 2.60s (average time of the program, on my VM) ➾ so +1,977s

(+313,81%)

As we can see, the new score heuristic it’s better than the old, we almost reach 100%

of win rate (against random), and we have an average only 2 seconds slower.

So we can say that the improvement is real.

10

4 Performances

4.1 Time

Here are 6 different times for the execution af AI vs Random game :

time . / r e v e r s i −b1 −w0

r e a l 5 .05 s r e a l 1 .04 s r e a l 4 .38 s

user 4 .93 s user 1 .02 s user 4 .34 s

sys 0 .12 s sys 0 .01 s sys 0 .04 s

cpu 99% cpu 99% cpu 99%

r e a l 0 .95 s r e a l 2 .43 s r e a l 1 .63 s

user 0 .93 s user 2 .41 s user 1 .61 s

sys 0 .02 s sys 0 .01 s sys 0 .03 s

cpu 99% cpu 99% cpu 100%

4.2 Valgrind check

echo −e ”c4\ne3\nf4 \n\nq\ny\n\n” | va l g r ind . / r e v e r s i > /dev/ nu l l

==21195== Memcheck , a memory e r r o r de t e c t o r

==21195== Copyright (C) 2002−2017 , and GNU GPL’d , by Ju l i an Seward et a l .

==21195== Using Valgrind −3.18.1 and LibVEX ; rerun with −h f o r copyr ight i n f o

==21195== Command: . / r e v e r s i

==21195==

==21195==

==21195== HEAP SUMMARY:

==21195== in use at e x i t : 0 bytes in 0 b locks

==21195== t o t a l heap usage : 10 a l l o c s , 10 f r e e s , 12 ,945 bytes a l l o c a t e d

==21195==

==21195== Al l heap b locks were f r e ed −− no l e ak s are p o s s i b l e

==21195==

==21195== For l i s t s o f detec ted and suppressed e r ro r s , rerun with : −s

==21195== ERROR SUMMARY: 0 e r r o r s from 0 context s (suppressed : 0 from 0)

Figure 4: Result of valgrind check of game with only humans

As we can the see above the valgrind test with only humans, have no memory problem,

all is free.

11

va l g r ind . / r e v e r s i −b1 −w0 > /dev/ nu l l

==20808== Memcheck , a memory e r r o r de t e c t o r

==20808== Copyright (C) 2002−2017 , and GNU GPL ’d , by Ju l i an Seward et a l .

==20808== Using Valgrind −3.18.1 and LibVEX ; rerun with −h f o r copyr ight i n f o

==20808== Command: . / r e v e r s i −b1 −w0

==20808==

==20808==

==20808== HEAP SUMMARY:

==20808== in use at e x i t : 30 ,729 ,520 bytes in 384 ,119 b locks

==20808== t o t a l heap usage : 548 ,792 a l l o c s , 164 ,673 f r e e s , 43 ,907 ,376 bytes

a l l o c a t e d

==20808==

==20808== LEAK SUMMARY:

==20808== d e f i n i t e l y l o s t : 30 ,671 ,200 bytes in 383 ,390 b locks

==20808== i n d i r e c t l y l o s t : 58 ,320 bytes in 729 b locks

==20808== po s s i b l y l o s t : 0 bytes in 0 b locks

==20808== s t i l l r eachab l e : 0 bytes in 0 b locks

==20808== suppressed : 0 bytes in 0 b locks

==20808== Rerun with −−leak−check=f u l l to s ee d e t a i l s o f l eaked memory

==20808==

==20808== For l i s t s o f detec ted and suppressed e r ro r s , rerun with : −s

==20808== ERROR SUMMARY: 0 e r r o r s from 0 context s (suppressed : 0 from 0)

Figure 5: Result of valgrind check of game with AI

And here we can see there is some allocations that are not free, it’s because of the

recursivity of minimax ab() the board copied is free at the end of the recursivity and not

every time.

12

4.3 Gprof

Flat p r o f i l e :

Each sample counts as 0 .01 seconds .

% cumulat ive s e l f s e l f t o t a l

time seconds seconds c a l l s ms/ c a l l ms/ c a l l name

24 .86 0 .41 0 .41 189795701 0 .00 0 .00 board get

16 .07 0 .68 0 .27 1785997 0 .00 0 .00 board play

9 .70 0 .84 0 .16 56041032 0 .00 0 .00 s h i f t s o u t h

7 .88 0 .97 0 .13 8441507 0 .00 0 .00 compute moves

6 .67 1 .08 0 .11 56500388 0 .00 0 .00 s h i f t n o r t h

5 .15 1 .16 0 .09 51162022 0 .00 0 .00 s h i f t e a s t

4 .85 1 .24 0 .08 1297493 0 .00 0 .00 board pr in t

4 .55 1 .32 0 .08 50020322 0 .00 0 .00 sh i f t nw

3 .64 1 .38 0 .06 1786098 0 .00 0 .00 board next move

3 .33 1 .43 0 .06 55553324 0 .00 0 .00 s h i f t w e s t

3 .33 1 .49 0 .06 43323672 0 .00 0 .00 s h i f t s e

3 .03 1 .54 0 .05 3083550 0 .00 0 .00 boa rd s e t p l ay e r

2 .12 1 .57 0 .04 48856634 0 .00 0 .00 s h i f t sw

1 .52 1 .60 0 .03 49029366 0 .00 0 .00 s h i f t n e

1 .21 1 .62 0 .02 44440365 0 .00 0 .00 boa rd s i z e

1 .21 1 .64 0 .02 331 0 .06 4 .97 minimax ab

0 .30 1 .64 0 .01 4381210 0 .00 0 .00 bitboard popcount

0 .30 1 .65 0 .01 1786057 0 .00 0 .00 board se t

0 .30 1 .65 0 .01 frame dummy

0.00 1 .65 0 .00 4487941 0 .00 0 .00 board count p layer moves

0 .00 1 .65 0 .00 1786061 0 .00 0 .00 move set

0 .00 1 .65 0 .00 1786028 0 .00 0 .00 board p layer

0 .00 1 .65 0 .00 1785969 0 .00 0 .00 board copy

0 .00 1 .65 0 .00 1404450 0 .00 0 .00 boa rd cp no a l l o c

0 .00 1 .65 0 .00 1297493 0 .00 0 .00 board sco re

0 .00 1 .65 0 .00 488476 0 .00 0 .00 boa rd f r e e

% the percentage o f the t o t a l running time o f the

time program used by t h i s f unc t i on .

cumulat ive a running sum of the number o f seconds accounted

seconds f o r by t h i s func t i on and those l i s t e d above i t .

s e l f the number o f seconds accounted f o r by t h i s

seconds func t i on a lone . This i s the major s o r t f o r t h i s

l i s t i n g .

c a l l s the number o f t imes t h i s func t i on was invoked , i f

t h i s f unc t i on i s p r o f i l e d , e l s e blank .

13

s e l f the average number o f m i l l i s e c ond s spent in t h i s

ms/ c a l l f unc t i on per c a l l , i f t h i s f unc t i on i s p r o f i l e d ,

e l s e blank .

t o t a l the average number o f m i l l i s e c ond s spent in t h i s

ms/ c a l l f unc t i on and i t s descendents per c a l l , i f t h i s

f unc t i on i s p r o f i l e d , e l s e blank .

name the name o f the func t i on . This i s the minor s o r t

f o r t h i s l i s t i n g . The index shows the l o c a t i o n o f

the func t i on in the gpro f l i s t i n g . I f the index i s

in pa r en th e s i s i t shows where i t would appear in

the gpro f l i s t i n g i f i t were to be pr in ted .

5 Conclusion

To conclude, I don’t think I have the best code or the best AI or the best report, but I’m

sure that I have learned some things during this course and I will remember it for sure.

Maybe it’s not exactly how I wanted to do it, but I’m still proud of my work, even if

there is still some problems that I didn’t saw in my code.

And after a lot of trials and improvement of my heuristic function, I still can’t beat the

”FLEURY Emmanuel-reversi”, it is too strong for my AI.

P.S.: It’s possible that there are few words missing in some sentences, even I read myself after I don’t

know why but I don’t see that.

14

References

[1] Rules of Othello/Reversi. French Federation of Othello (FFO).

[2] Hamming Weight. Wikipedia.

[3] Minimax Algorithm. Wikipedia.

[4] Alpha–beta pruning. Wikipedia.

[5] Cameron Browne. Bitobard methods for games. Paper.

[6] Kartik Kukreja. Heuristic Function for Reversi (Othello).cpp. GitHub.

[7] Kartik Kukreja. Heuristic/Evaluation Function for Reversi/Othello. Wordpress website.

15

https://www.ffothello.org/othello/regles-du-jeu/
https://en.wikipedia.org/wiki/Hamming_weight
https://en.wikipedia.org/wiki/Minimax
https://en.wikipedia.org/wiki/Alpha\OT1\textendash beta_pruning
https://www.labri.fr/perso/fleury/courses/llp/documents/reversi/Bitboard_game_techniques.pdf
https://github.com/kartikkukreja/blog-codes/blob/master/src/Heuristic%20Function%20for%20Reversi%20(Othello).cpp
https://kartikkukreja.wordpress.com/2013/03/30/heuristic-function-for-reversiothello/

	Introduction
	Description of the project
	Goal(s)
	What already exists

	Implementation
	Project folder structure
	Libraries
	Code
	Structures
	Board.c
	Player.c
	Reversi.c

	Algorithms
	Minimax
	Minimax with Alpha-Beta pruning
	Score Heuristic

	Performances
	Time
	Valgrind check
	Gprof

	Conclusion
	References

